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Synopsis 

The author’s six articles on VSE equation of state for liquids are summarized in tabular form, and 
certain conclusions, applicable to the direction of research on plastics, are drawn. 

INTRODUCTION 

This article summarizes the author’s research, extending over many years, on 
the thermodynamic properties of simple liquids. 

Equilibrium thermodynamics gives equations, which must be exactly obeyed, 
relating certain of these properties, but it does not give the magnitudes of 
properties, such as the energy, volume, or entropy, characteristic of any particular 
substance at any temperature or pressure. Empirical “equations-of-state,” with 
parameters deduced from experimental data, have often been used to represent 
the dependence of the volume on the temperature and pressure. Alternatively, 
one can relate the volume to the entropy and the energy. The author has shown 
that this relationship can be expressed by relatively simple equations, giving good 
agreement with experiment over large ranges of temperature-in some cases over 
the whole liquid range. Our volume-entropy-energy (VSE) equation can then 
be used to calculate all the other usual thermodynamic properties with high 
accuracy. 

It was observed that all of the liquids examined have two modes of behavior, 
which we have termed the “regular” and “irregular” regions. Our VSE equation 
of state applies without correction to the regular region only. The characteristic 
dividing the two regions is the average separation of the molecules. In an ho- 
mologous series, such as the n-alkanes, this distance has the same value for all 
members of the series. 

The present article gives the general equations used, their theoretical and 
experimental justification, references to the article in which the calculated and 
experimental magnitudes of the properties of certain liquids have been published, 
and a summary of the standard percentage differences between the calculated 
and experimental properties. 

THEORETICAL 

According to Gibbs,’ there are five quantities that determine the thermody- 
namic state of any system: temperature, pressure, volume per unit of mass, 
entropy per unit, and energy per unit. Any combination of three of these five 
state functions is called an equation of state. Thus, there are ten possible 
equations of state, but only one of these can be fundamental.2 This is the one 
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combination involving the three attributes volume, entropy, and energy. Callen* 
states that only the fundamental equation (the VSE equation of state) can give 
“all conceivable thermodynamic quantities” by calculation. 

The present study was undertaken for the purpose of gaining a better under- 
standing of the nature and behavior of liquids and it seemed quite obvious that 
the VSE equation of state should be identified with this goal. 

The equation that we have proposed and evaluated by comparison with 
measured thermodynamic quantities from the literature is 

(1) 
where E is the specific energy (J/g), s is the specific entropy (J/g deg), and f l ,  f z ,  
and f 3  are volume-dependent functions to be defined later. 

E = f l S f 2  + f 3  

Equation (1) may be derived as follows: 
First, consider that in a liquid, heat and energy rre substantially inter- 

changeable because the expansion volume Au is so slight that the work of ex- 
pansion PAu is practically negligible. 

Second, it is known that in every liquid there is a region, to be defined later, 
over which heat capacity at constant volume is directly proportional to entropy. 
That is, 

c, = (slope) s (2) 
Therefore, one may write what we call the “fundamental differential equation 

of the liquid state” as follows: 
ds d T  
7°F 

By definition 

(3) 

However, in the regular region of a liquid, from eq. (21, one may substitute (slope) 
s for c,, when 

dc = (slope) s d T  
Also, 

dc = T d s  

when 
T d s  = (slope) s d T  

Therefore, from eq. (7) one may write 
ds d T  - = (slope) - 
S T 

which is eq. (3). 
Equation (1) follows directly from eq. (3), thus: rearrange eq. (3) to 

d T  ds 
T S 
-=K1- 
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By integration, 

1nT = K1 Ins + lnK2 = lnK2 sKnl 

and 

T =  K2sK1 

Substituting in eq. (6), 

dE = K2sK1 ds 

Integration of eq. (9) gives 

E = KZKISK1-l + K3 

(9) 

where Kz K1 = fl, K1 - 1 = f2, K3 = f3. The volume-dependent functions are 
defined by their derivatives as 

f1= c2 

fi = 0 
f i  = UPeW 

where p is a constant and w = 4u, and 
u-l = v1/3 - 113 V O  

where u is the specific volume, and uo is the specific “occupied” v01ume.~ 
The volume-dependent functions are now seen to be 

f l  = fib) = c1+ c2u 

f 2  = f 2 b )  = c3 

Since eq. (17) is difficult to integrate and introduces several additional pa- 
rameters, and the exact value adds nothing to our understanding of the liquid 
state, we prefer to use the following approximation equation: 

lnf3 = c4 + c 5  lnu (18) 

Equation (18) gives excellent agreement with measured values except in the 
neighborhood of Tcrit, but its derivatives are not accurate. Should it ever be 
necessary to have the exact values of f3, these may be obtained readily from ve- 
locity of sound measurements. 

The final form of our VSE equation of state for liquids is thus written 

E = f1sc3 + f3 (19) 

This equation is valid only in the “region of regular performance.” Corrections 
must be applied to fl, f2, and f3 for calculations made in the “region of irregular 
performance.” 

The point that divides these two modes of behavior is determined by the av- 
erage separation of the molecules and is characteristic of the substances. We 
call this distance llud, and the corresponding temperature we call T u d .  For 
members of homologous series, such as the n-alkanes, ud has the same value, 
although Tud differs. 
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CALCULATION OF PARAMETERS ~ 1 ,  CZ, ~ 3 ,  ~ 4 ,  AND ~5 

There are many ways to calculate the parameters of eq. ( l) ,  but the simplest 
is from heat capacity measurements. Two points, taken in the region of regular 
performance, are sufficient to characterize all five of the above parameters, 
provided the quantities are known with high accuracy. Since heat capacity 
measurements are usually made over a range of temperatures, it is generally more 
convenient to use several points. In this way, one may be certain of Tud, and 
use only points lying between Tud and Tcrit. 

If two or more values of u, c p ,  and 6, plus one value of E are known accurately 
in the regular region, all other thermodynamic quantities pertaining to the system 
can be calculated from eq. (19), with high accuracy. This can be done because, 
in the regular region, u, cp ,  and s, are substantially linear with T.  Therefore, 
one can calculate a, c,, s, and E from 

(20) C" = cP - TUCYY 

s = 1 " d T  T 

and 

E = S T d s  

The integration constant of eq. (21) is zero, that of eq. (22) is determined from 
the experimental value of E .  

CALCULATION OF ~3 

The slope of c, vs. s is related to c3 as follows: 

c3 = I/slope + 1 

CALCULATION OF ~1 AND ~2 

At constant volume, 

and 

f l  = T / c ~ s ' ~ - '  

However, from eq. (13), 

f l  = c 1 +  c2u 

where u is defined by eq. (14). Thus, with two points, c1 and c2 are deter- 
mined. 
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CALCULATION OF ~4 AND ~5 

From eq. (19), one may write 

The values of c4 and c5 are obtained from eqs. (14) and (18). 

CALCULATION OF THERMODYNAMIC QUANTITIES 
All thermodynamic quantities can be expressed as derivatives of energy. Thus, 

from eq. (19), the following equations may be derived (only those thermodynamic 
quantities are listed here that have been measured by others and published; 
therefore, this list does not include all possible thermodynamic quantities): 

1nT - lnfl - lnc3 
c3- 1 

Ins = 

PT 
S 

c, = (2)" = - 

- = - ( E ) s = F ( $ ) s  P 

c3- 1 

cp  = (2)p = cp + Tuay 

10 

(33) 

(34) 

(35) 

Note: Values of a and P from eqs. (27) and (30) were calculated for only one 
substance, n-heptane, since accurate calculation of derivatives of f3 can be made 
only from eq. (17) which involves additional parameters. 

VERIFICATION OF THE EQUATION 

Calculation of various thermodynamic quantities pertaining to the following 
liquids have been made and compared with corresponding measured quantities. 
All of these results are summarized in Table I. The standard percentage error 
(SPE) (assuming that the measured quantities were correct in each case) of the 
1034 calculations made was less than 4 of 1%. 
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The liquids studied were 5 n -alkanes? b e n ~ e n e , ~  m e r ~ u r y , ~  water,4  odium,^ 
poly(tetrafluoroethy1ene) ,6 and polymethylene of 75,000 molecular   eight.^ 

Three sets of calculations were made on n-heptane. The firsts involved the 
exact equation for f 3 ,  but carried some of the calculations only as high as y ob- 
tained from literature values of PT,  which was 372 K. The second set of calcu- 
l a t i o n ~ ~  carried the results from Tmp to the highest experimental value of y ob- 
tained from internal pressure data, which was 390 K. The third set of calcula- 
t i o n ~ ~  were carried from T u d  to Tcrit ,  using values of y obtained from very ac- 
curate PVT data,1° which went to 540 K. 

a The regular region (see below) for n-heptane starts a t  ud = 10 (280 K). 
The number of points taken is listed just above the SPE values. 
At 303.16 K, the highest pressure listed is 300 bar. All others are listed up to 500 bar. This is 

because the value for u at 303.16 K and 300 bar is about ud = 10. 
Values of Tmp and ud for the liquids studied in this series are 

Compound T m p  (K) Pd (corresponding T&) (K) 

n-Pentane 
n-Hexane 
n-Heptane 
n-Nonane 
n -Heptadecane 
Benzene 
Mercury 
Water 
Sodium 
Poly (tetrafluoroethylene) 
Polymethylene 

143.99 
177.81 
182.55 
219.64 
295.14 
278.69 
234.29 
273.16 
370.66 
600.16 
407.21 

10 
10 
10 
10 
10 
12.31 
35.73 
9.72 
4.2 
2.09 

10 

250 
270 
280 
310 
360 
323 

1073 
533 

1200 
625 
475 

The irregular region is from Tmp to T u d ,  and the regular region is from T u d  to Tcrit. Most of the 
liquids examined in ref. 4 are studied from Tmp to their highest temperature of measurement. 
Equations requiring additional parameters are given in ref. 4 for correcting the volume-dependent 
functions in the irregular region. In the regular region, the volume-dependent functions f l  and f 2  

are very simply defined and require only three parameters. The potential energy function f 3  is more 
complicated, but can be closely approximated by a simple equation requiring only two parameters. 
In ref. 8, the exact equation for f 3  was used. In all other calculations in this series, the approximation 
equation is used for simplicity. Since several additional parameters are required for correcting f l ,  

f z ,  and f 3  in the irregular region, and such empirical calculations add nothing to our understanding 
of the liquid state, all calculations in this series of papers refer to liquids in the regular region except 
those in ref. 4. The behavior of every liquid becomes irregular when u > ud. The value of u increases 
as the temperature is lowered or as the external pressure is raised or both. In all cases, the vol- 
ume-dependent functions f 1 ,  f z ,  and f 3  can be corrected empirically in the manner described in ref. 
4. 

Although a hypothetical polymethylene of MW = 75,000 is assumed for the calculations of ref. 
7, so that no actual thermodynamic measurements are available in this case, nevertheless, temperature 
can be calculated from 

Tcalc = f1C3Sc3-' (3) 

The SPE4 in Tcalc, over the range 500-650 K, based on AT = Tcalc - T ,  is 0.0013%, which is listed, 
although the calculations are not shown in the article. The grand average SPE for all 1034 points 
calculated in this series of six articles is 0.32%. 
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CONCLUSIONS 

The lessons that have been learned from this study should prove useful in 
directing further research on plastics made of chain polymers. These include 
the following: 

(1) All liquids have a region of regular performance that is defined by the av- 
erage distance of separation of the molecules. If this average distance is repre- 
sented by l lu,  given by eq. (14), then the regular regions lie between values of 
u from 0 to ud .  

In the irregular region the simple equations for fl, fz, and f 3  fail, so a correction 
must be applied. The form of this correction is the same for all liquids examined 
[eqs. (6)-(8) of ref. 41, but the agreement in the irregular region of calculated with 
experimental values is not as good with highly polar liquids (such as water and 
mercury) as it is with the other liquids studied by us. 

This suggests that, in the neighborhood of the melting point, certain cohesive 
forces come into play that are greater with highly polar liquids than with nonpolar 
liquids. 

(2) In the regular region, the fractional change in entropy is directly propor- 
tional to the fractional change in temperature just as it is in gases. The only 
difference is that in gases, one deals with entropy at  constant volume, whereas 
with liquids one uses saturation-pressure values. The proportionality constants 
are not the same for both phases. 

(3) A van der Waals-type PVT equation of state applies to liquid polymers 
in the regular region. 

(4) Volume, entropy, and energy of polymers are all substantially linear with 
absolute temperature in the regular region, as is the case with gases. 

( 5 )  The point at which deviation from regular behavior begins is clearly evident 
visually in polyethylene. This suggests that Ud corresponds to the temperature 
at which all crystallites have melted. In liquids of lower molecular weight, these 
crystallites are not visible, but there is no reason to suppose that they do not exist 
and become more dense as the freezing temperature of the liquid is approached. 
This phenomenon could also contribute to the failure of uncorrected calculated 
thermophysical quantities to correspond to the observed values in the irregular 
region. 

Table I lists all thermodynamic quantities that have been calculated from our 
equation of state in this series of articles that have been compared with measured 
values obtained from the literature. The ranges of temperature and of pressure 
over which the comparisons are made are also listed as well as the SPE. This 
quantity is defined as follows: 

(36) AY 100 b o b s  - Ycalc) [% error] = 100 X - = 
Yobs Yobs 

SPE, = standard percentage error for n points 

= {c[%]211/2/2 = ( c [ 1 o o ( Y o b s  - Y c a l c ) / Y o b ~ l ~ ~ ~ / ~ / n  (364 
where ycalc is the calculated value, Yobs is the observed value, and n is the number 
of points. The grand average SPE for all 1034 points is 0.32%. 

As soon as the calculations on polymeric ~ y s t e r n s ~ , ~  were completed, a possible 
improvement in the manufacture and application of paint was envisioned that 
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would have been very unlikely to have been discovered had this scientific study 
not been made. If patents can be obtained and the idea can be successfully 
adapted to commercial practice, it should afford great savings in certain areas 
of the paint industry. 

Therefore, it appears that one of the goals sought in undertaking this research 
program may be realized. 

The author has been given a great deal of help in pursuing the VSE equation of state program over 
the past 20 years by his associates in the Arcadia Institute. The assistance of S. S. Kurtz, Jr., M. 
L. Huggins, and E. B. Bagley is acknowledged with thanks. Likewise, the officers and trustees of 
the corporation have contributed liberally of their time and advice. Of these, L. D. Price, General 
Counsel, and R. A. Pew, Chairman of the Executive Committee, deserve particular mention. 
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